and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CuCl}_{3}$ salt structures. Constrained by the inversion center symmetry, the distortion of the $\left[\mathrm{Cu}_{2} \mathrm{Cl}_{6}\right]^{2-}$ dimer, which is crucial for magnetic behavior of this complex, is of a twisting mode, i.e. the plane defined by a Cu atom and two terminal Cl atoms, $\mathrm{Cu} / \mathrm{Cl}(1) / \mathrm{Cl}(3)$, is twisted by an angle of 45° with respect to the $\mathrm{Cu}-\mathrm{Cl}(2)-\mathrm{Cu}-\mathrm{Cl}(2)$ plane.

References

Daoud, A., Ben Salah, A., Chappert, C., Renard, J. P., Cheikhrouhou, A., Tran Qui, D. \& Verdaguer, M. (1986). Phys. Rev. B, 33(9), 6253-6260.

Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide, version 1.1. Enraf-Nonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Landée, C. P. \& Willett, R. D. (1979). Phys. Lett. 46, 463-469.
Peersy, P. S., Morigin, B. \& Smara, G. A. (1973). Phys. Rev. B, 8, 3378-3388.
Richards, R. L., Shortman, C., Povey, D. C. \& Smith, G. W. Acta Cryst. (1987). C43, 2309-2311.
Willett, R. D., Dwiggins, C. Jr, Kruh, R. H. \& Rundle, R. E. (1963). J. Chem. Phys. 38, 2429-2436.

Acta Cryst. (1989). C45, 35-37

1,1,2,2,4,4,5,5-Octamethyl-1,2,4,5-tetrastannacyclohexane

By Hans Preut and Terence N. Mitchell
Fachbereich Chemie, Universität Dortmund, Postfach 500500, D-4600 Dortmund 50, Federal Republic of Germany

(Received 13 June 1988; accepted 30 September 1988)

Abstract

C}_{10} \mathrm{H}_{28} \mathrm{Sn}_{4}, M_{r}=623.09\), monoclinic, $P 2_{1} / c$, $a=20.095$ (6), $b=6.492$ (2), $c=16.067$ (7) $\AA, \beta=$ $112.88(3)^{\circ}, \quad V=1931(1) \AA^{3}, \quad Z=4, \quad D_{x}=$ $2.143 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $5 \cdot 12 \mathrm{~mm}^{-1}, F(000)=1152, T=291(1) \mathrm{K}$, final R $=0.070$ for 1243 unique observed $[F \geq 4.0 \sigma(F)]$ diffractometer data. The molecule is in the boat conformation. The $\mathrm{Sn}-\mathrm{Sn}$ bond lengths are 2.791 (3) and 2.780 (3) \AA; this small difference, which is greater than three times the corresponding standard deviation, parallels the two different values for the one-bond $\mathrm{Sn}-\mathrm{Sn}$ coupling constant observed in the ${ }^{119} \mathrm{Sn}$ solidstate spectrum of the compound.

Introduction. Previous work (Meunier-Piret, Van Meerssche, Gielen \& Jurkschat, 1983; Preut, Bleckmann, Mitchell \& Fabisch, 1984) has shown that 1,2,4,5-tetrastannacyclohexanes can exist in both chair and boat forms: the chair form is observed for the octaphenyl derivative, while the cis-dodecamethyl derivative exists in a boat structure. In order to obtain more information on the factors determining which structure is preferred, we decided to determine the crystal structure of $1,1,2,2,4,4,5,5$-octamethyl-1,2,4,5tetrastannacyclohexane. The high-resolution solid-state ${ }^{119}$ Sn NMR spectrum of this compound reveals four non-equivalent Sn signals (Harris, Mitchell \& Nesbitt, 1985) with two different one-bond $\mathrm{Sn}-\mathrm{Sn}$ coupling constants (Mitchell, 1986): these may be related to differences in the $\mathrm{Sn}-\mathrm{Sn}$ bond length.

0108-2701/89/010035-03\$03.00

Experimental. Title compound prepared by treating 1,3-dibromo-1,1,3,3-tetramethyl-1,3-distannapropane with sodium in liquid ammonia; colourless crystals obtained by vacuum sublimation, m.p. 372-373 K, yield 73\% (Mitchell, Fabisch, Wickenkamp, Kuivila \& Karol, 1986). Crystal size $0.06 \times 0.06 \times 0.38 \mathrm{~mm}$. The external form of the crystals and the X-ray photographs indicated poor quality of the crystals which diffracted weakly. $\omega / 2 \theta$ scan, scan speed $2.5-14.6^{\circ} \mathrm{min}^{-1}$ in θ, Nicolet $R 3 m / \mathrm{V}$ diffractometer, graphite-monochromated Mo $K \alpha$; lattice parameters from least-squares fit with 22 reflections up to 2θ $=24.3^{\circ}$; six standard reflections recorded every 2.5 h showed up to 52% intensity loss; 4773 reflections measured, $1.5 \leq \theta \leq 21 \cdot 0^{\circ},-17 \leq h \leq 17,0 \leq k \leq 7$, $-21 \leq l \leq 21$; after averaging ($R_{\mathrm{int}}=0.061$): 2099 unique reflections, 1243 with $F \geq 4 \cdot 0 \sigma(F)$; Lorentzpolarization correction, decay correction, no absorption correction; systematic absences ($h 0 l$) $l=2 n+1$, ($0 k 0$) $k=2 n+1$ conform to space group $P 2_{1} / c$; structure solution via Patterson function, ΔF syntheses and full-matrix least-squares refinement with anisotropic temperature factors for all non- H atoms and a common isotropic temperature factor for H atoms, which were placed in geometrically calculated posi-
 reflections and 128 refined parameters; $w=1.0$ / $\left[\sigma^{2}(F)+0.0005 F^{2}\right] ; \quad S=1.62, \quad R=0.070, \quad \omega R=$ $0.060,(\Delta / \sigma)_{\max }=0.30$, no extinction correction; largest peak in final $\Delta F \operatorname{map} \pm 1.4(6) \mathrm{e} \AA^{-3}$, atomic (c) 1989 International Union of Crystallography
scattering factors for neutral atoms and real and imaginary dispersion terms from International Tables for X-ray Crystallography (1974); programs: PARST (Nardelli, 1983), SHELXTL-Plus (Sheldrick, 1987). The molecule and the numbering scheme are shown in Fig. 1, packing in Fig. 2. Positional parameters and the equivalent values of the anisotropic temperature factors for the non-H atoms are given in Table 1.* Bond lengths and angles are given in Table 2.

Discussion. The molecule studied here exists in the crystalline state in a boat conformation, while the corresponding octaphenyl derivative adopts a chair form (Meunier-Piret et al., 1983): thus the two

[^0]Fig. 1. General view (SHELXTL-Plus graphic) of the molecule, showing the atom-numbering scheme. The ellipsoids correspond to 50% probability.

Fig. 2. Stereoview showing the crystal packing. (c axis nearly horizontal, a axis vertical.)

Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

	$U_{\text {eq }}=\frac{1}{3} \sum_{l} \sum_{j} U_{l j} a_{l}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
$\mathrm{Sn}(1)$	0.16900 (11)	$0 \cdot 15289$ (48)	$0 \cdot 18447$ (13)	53
$\mathrm{Sn}(2)$	0.36070 (11)	0.13952 (43)	$0 \cdot 23063$ (13)	49
$\mathrm{Sn}(3)$	0.33101 (10)	0.00183 (49)	0.05599 (13)	50
$\mathrm{Sn}(4)$	0.13877 (10)	0.01313 (46)	0.00923 (13)	52
C(1)	0.2699 (16)	0.3099 (49)	0.2341 (21)	57
C(2)	0.2242 (15)	0.0989 (50)	-0.0332 (20)	56
C(3)	0.1760 (21)	-0.0996 (56)	0.2748 (22)	86
C(4)	0.0858 (15)	0.3503 (69)	0.1892 (21)	91
C(5)	0.4554 (16)	$0 \cdot 3260$ (61)	0.2785 (21)	69
C(6)	0.3850 (20)	-0.1168 (56)	0.3251 (22)	80
C(7)	0.4072 (15)	$0 \cdot 1223$ (54)	0.0056 (19)	54
C(8)	0.3364 (19)	-0.3230 (92)	0.0525 (23)	131
C(9)	0.0389 (16)	$0 \cdot 1476$ (60)	-0.0853 (19)	70
C(10)	0.1271 (18)	-0.3114 (73)	-0.0016 (24)	106

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Sn}(1)-\mathrm{Sn}(4)$	2.791 (3)	$\mathrm{Sn}(2)-\mathrm{C}(6) \quad 2$	$2 \cdot 18$ (4)
$\mathrm{Sn}(1)-\mathrm{C}(1)$	2.13 (3)	$\mathrm{Sn}(3)-\mathrm{C}(2) \quad 2$	$2 \cdot 16$ (3)
$\mathrm{Sn}(1)-\mathrm{C}(3)$	$2 \cdot 16$ (4)	$\mathrm{Sn}(3)-\mathrm{C}(7) 2$	2.14 (3)
$\mathrm{Sn}(1)-\mathrm{C}(4)$	$2 \cdot 13$ (4)	$\mathrm{Sn}(3)-\mathrm{C}(8) \quad 2$	$2 \cdot 11$ (6)
$\mathrm{Sn}(2)-\mathrm{Sn}(3)$	2.780 (3)	$\mathrm{Sn}(4)-\mathrm{C}(2) \quad 2$	$2 \cdot 15$ (4)
$\mathrm{Sn}(2)-\mathrm{C}(1)$	2.15 (3)	$\mathrm{Sn}(4)-\mathrm{C}(9) \quad 2$	2.17 (3)
$\mathrm{Sn}(2)-\mathrm{C}(5)$	2.13 (3)	$\mathrm{Sn}(4)-\mathrm{C}(10)$	$2 \cdot 12$ (5)
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{C}(4)$	106.2 (14)	$\mathrm{Sn}(2)-\mathrm{Sn}(3)-\mathrm{C}(7)$	111.1 (8)
$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(4)$	110.2 (14)	$\mathrm{Sn}(2)-\mathrm{Sn}(3)-\mathrm{C}(2)$	$110 \cdot 1$ (9)
$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(3)$	108.0 (13)	$\mathrm{C}(7)-\mathrm{Sn}(3)-\mathrm{C}(8)$	107.7 (15)
$\mathrm{Sn}(4)-\operatorname{Sn}(1)-\mathrm{C}(4)$	111.4 (9)	$\mathrm{C}(2)-\mathrm{Sn}(3)-\mathrm{C}(8)$	108.7 (14)
$\mathrm{Sn}(4)-\mathrm{Sn}(1)-\mathrm{C}(3)$	111.3 (10)	$\mathrm{C}(2)-\mathrm{Sn}(3)-\mathrm{C}(7)$	108.4 (12)
$\mathrm{Sn}(4)-\operatorname{Sn}(1)-\mathrm{C}(1)$	109.6 (9)	$\mathrm{Sn}(1)-\mathrm{Sn}(4)-\mathrm{C}(10)$	112.3 (10)
$\mathrm{C}(5)-\mathrm{Sn}(2)-\mathrm{C}(6)$	104.8 (13)	$\mathrm{Sn}(1)-\mathrm{Sn}(4)-\mathrm{C}(9)$	110.7 (9)
$\mathrm{C}(1)-\mathrm{Sn}(2)-\mathrm{C}(6)$	109.7 (13)	$\mathrm{Sn}(1)-\mathrm{Sn}(4)-\mathrm{C}(2)$	110.4 (9)
$\mathrm{C}(1)-\mathrm{Sn}(2)-\mathrm{C}(5)$	110.2 (13)	C(9)-Sn(4)-C(10)	107.4 (14)
$\mathrm{Sn}(3)-\mathrm{Sn}(2)-\mathrm{C}(6)$	111.1 (10)	$\mathrm{C}(2)-\mathrm{Sn}(4)-\mathrm{C}(10)$	107.9 (14)
$\mathrm{Sn}(3)-\mathrm{Sn}(2)-\mathrm{C}(5)$	111.0 (9)	$\mathrm{C}(2)-\mathrm{Sn}(4)-\mathrm{C}(9)$	108.0 (12)
$\mathrm{Sn}(3)-\mathrm{Sn}(2)-\mathrm{C}(1)$	109.9 (9)	$\mathrm{Sn}(1)-\mathrm{C}(1)-\mathrm{Sn}(2)$	116.0 (15)
$\mathrm{Sn}(2)-\mathrm{Sn}(3)-\mathrm{C}(8)$	$110 \cdot 8$ (10)	$\mathrm{Sn}(3)-\mathrm{C}(2)-\mathrm{Sn}(4)$	115.1 (14)

additional methyl groups in the cis-decamethyl derivative are clearly not responsible for the transition to a boat form (Preut et al., 1984): it appears at present that the nature of the groups attached to Sn in $R_{2} \mathrm{Sn}$ moieties will determine the preferred geometry. The $\mathrm{Sn}-\mathrm{Sn}$ bond lengths in the title compound are noticeably longer than in the decamethyl derivative $[2.775$ (2) and 2.766 (2) \AA], while the $\mathrm{C}-\mathrm{Sn}-\mathrm{Sn}$ and $\mathrm{Sn}-\mathrm{C}-\mathrm{Sn}$ angles are smaller [average values for the decamethyl compound: 111.5 (3) and $112.2(4)^{\circ}$ respectively]. However, the $\mathrm{Sn}-\mathrm{C}-\mathrm{Sn}$ angle in the octaphenyl derivative [$120.6(1)^{\circ}$] is considerably more distorted from the tetrahedral angle. The NMR results noted in the Introduction agree with the present crystal structure and indicate that the small $\mathrm{Sn}-\mathrm{Sn}$ bond-length difference, which is greater than three times the corresponding standard deviation, is indeed reflected by differences in the one-bond $\mathrm{Sn}-\mathrm{Sn}$ coupling constant: further studies will hopefully shed more light on this question.

References

Harris, R. K., Mitchell, T. N. \& Nesbitt, G. J. (1985). Magn. Reson. Chem. 23, 1080-1082.
International Tables for X-ray Crystallography (1974). Vol. IV, Tables 2.2B and 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Press, Dordrecht.)
Meunier-Piret, J., Van Meerssche, M., Gielen, M. \& Jurkschat, K. (1983). J. Organomet. Chem. 252, 289-294.
Mitchell, T. N. (1986). Unpublished results.

Mitchell, T. N., Fabisch, B., Wickenkamp, R., Kuivila, H. G. \& Karol, T. (1986). Silicon Germanium Tin Lead Compd. 9, 57-66.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Preut, H., Bleckmann, P., Mitchell, T. N. \& Fabisch, B. (1984). Acta Cryst. C40, 370-372.

Sheldrick, G. M. (1987). SHELXTL-Plus, release 2. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. For Nicolet $R 3 m / V$. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1989). C45, 37-40

Bromo($\boldsymbol{N}, \boldsymbol{N}$-dimethyldithiocarbamato)dimethylgermanium and ($\boldsymbol{N}, \boldsymbol{N}$-Dimethyldithiocarbamato)iododimethylgermanium

By Raj K. Chadha,* John E. Drake, \dagger Anil B. Sarkar \ddagger and Maria L. Y. Wong
Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

(Received 12 February 1988; accepted 1 August 1988)

Abstract

Ge}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right\} \mathrm{Br}\left(\mathrm{CH}_{3}\right)_{2}\right], \quad M_{r}=302 \cdot 8\), monoclinic, $P 2_{1}, a=9.471$ (4), $b=10.777$ (5), $c=$ 11.383 (4) $\AA, \beta=106.99$ (3) ${ }^{\circ}, V=1111$ (1) $\AA^{3}, Z=$ $4, \quad D_{x}=1.81, \quad D_{m}=1.79 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=$ $0.71069 \AA, \quad \mu=650.1 \mathrm{~mm}^{-1}, \quad F(000)=592, \quad T=$ 291 K , final $R=0.0519, w R=0.0543$ for 1407 unique observed reflections. $\left[\mathrm{Ge}\left\{\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right\}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{I}\right], M_{r}$ $=349.8$, monoclinic, $P 2 / c, \quad a=9.935(3), \quad b=$ 10.434 (3), $c=12.425$ (2) $\AA, \quad \beta=117.71$ (2) ${ }^{\circ}, \quad V=$ 1140 (1) $\AA^{3}, \quad Z=4, D_{x}=2.04, \quad D_{m}=2.00 \mathrm{Mg} \mathrm{m}^{-3}$, $\mu=543.4 \mathrm{~mm}^{-1}, F(000)=664, T=291 \mathrm{~K}$, final R $=0.0468, w R=0.0498$ for 1235 unique observed reflections. The structure of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{GeBr}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right]$ contains two independent molecules in which the Ge atom is at the centre of a distorted trigonal bipyramid. Two $\mathrm{Ge}-\mathrm{C}$ bonds and one $\mathrm{Ge}-\mathrm{S}$ bond occupy the equatorial positions with the $\mathrm{Ge}-\mathrm{Br}$ bond accounting for one of the axial positions. The other axial position is occupied by the second S atom of the dithiocarbamate ligand but at a distance much greater than in the $\mathrm{Ge}-\mathrm{S}$ equatorial bond. The structure of $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{GeI}\left[\mathrm{S}_{2} \mathrm{CN}\right.$ $\left(\mathrm{CH}_{3}\right)_{2}$] is similar to that just described for the bromo analogue with two notable exceptions. There is only one independent molecule and the axial $\mathrm{Ge}-\mathrm{S}$ distance is considerably shorter.

Introduction. In an earlier publication (Chadha, Drake \& Sarkar, 1984) we demonstrated that the structure of

[^1]$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{GeCl}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right]$ provided an example of a distorted trigonal bipyramidal germanium compound with an anisobidentate ligand. The $\mathrm{Ge}-\mathrm{Cl}$ bond occupying the axial position was considerably longer and weaker than those typically found for four-coordinate germanium chlorides (Drake, Hencher \& Shen, 1977; Li \& Durig, 1973; Morino, Nakamaru \& Iijima, 1960) and was comparable with the axial $\mathrm{Ge}-\mathrm{Cl}$ bond in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}\right]\left[\mathrm{GeCl}_{4}\right]$ (Beattie \& Ozin, 1970; Bilton \& Webster, 1972). A comparison of the spectroscopic data of the three compounds $\left(\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{Ge} X\left[\mathrm{~S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right], X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$ (Chadha, Drake \& Sarkar, 1986), indicated that similar distorted trigonal bipyramidal structures might be expected for the bromo and iodo derivatives. In particular, the values of the $\mathrm{Ge}-\mathrm{Br}$ and $\mathrm{Ge}-\mathrm{I}$ stretching vibrations were of the order of 80 and $100 \mathrm{~cm}^{-1}$ respectively lower than in the related four-coordinate germanium halide derivatives $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{GeBr}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{GeI}_{2}$ (Anderson, Barker, Drake \& Hemmings, 1971; Griffiths, 1964; Van de Vondel, Van der Kelen \& Van Hooydonk, 1970). We have completed the crystal structures of $\operatorname{bromo}(N, N-$ dimethyldithiocarbamato)dimethylgermanium, $\left(\mathrm{CH}_{3}\right)_{2}-$ $\mathrm{GeBr}\left[\mathrm{S}_{2} \mathrm{CN}\left(\mathrm{CH}_{3}\right)_{2}\right]$, and (N, N-dimethyldithiocarbamato)iododimethylgermanium, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{GeI}\left[\mathrm{S}_{2} \mathrm{CN}\right.$ $\left(\mathrm{CH}_{3}\right)_{2}$], which not only confirm the predictions based on spectroscopy but also draw attention to some interesting trends.

Experimental. Preparation as described by Chadha, Drake \& Sarkar (1986) followed by slow evaporation of CS_{2} solution, density measured by flotation in $\mathrm{C}_{2} \mathrm{H}_{5} /$ /ligroin or $\mathrm{CH}_{3} \mathrm{I}$ /ligroin for the bromo and iodo

[^0]: * Lists of H -atom coordinates, anisotropic thermal parameters and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51322 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: * Current address: Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada.
 \dagger To whom correspondence should be addressed.
 \ddagger Current address: Department of Chemistry, University of Calgary, Calgary, Alberta, Canada.

